Constraint Qualifications for Convex Inequality Systems with Applications in Constrained Optimization
نویسندگان
چکیده
For an inequality system defined by an infinite family of proper convex functions, we introduce some new notions of constraint qualifications in terms of the epigraphs of the conjugates of these functions and study relationships between these new constraint qualifications and other wellknown constraint qualifications including the basic constraint qualification studied by Hiriart-Urrutty and Lemarechal and by Li, Nahak, and Singer. Extensions of known results to more general settings are presented, and applications to particular important problems, such as conic programming and approximation theory, are also studied.
منابع مشابه
Constraint Qualifications for Extended Farkas's Lemmas and Lagrangian Dualities in Convex Infinite Programming
For an inequality system defined by a possibly infinite family of proper functions (not necessarily lower semicontinuous), we introduce some new notions of constraint qualifications in terms of the epigraphs of the conjugates of these functions. Under the new constraint qualifications, we obtain characterizations of those reverse-convex inequalities which are consequence of the constrained syst...
متن کاملConstraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming
For an inequality system defined by an infinite family of proper convex functions (not necessarily lower semicontinuous), we introduce some new notions of constraint qualifications. Under the new constraint qualifications, we provide necessary and/or sufficient conditions for the KKT rules to hold. Similarly, we provide characterizations for constrained minimization problems to have total Lagra...
متن کاملMetric Subregularity and Constraint Qualifications for Convex Generalized Equations in Banach Spaces
Several notions of constraint qualifications are generalized from the setting of convex inequality systems to that of convex generalized equations. This is done and investigated in terms of the coderivatives and the normal cones, and thereby we provide some characterizations for convex generalized equations to have the metric subregularity. As applications, we establish formulas of the modulus ...
متن کاملOn Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملComplete Dual Characterizations of Optimality and Feasibility for Convex Semidefinite Programming
A convex semidefinite programming problem is a convex constrained optimization problem, where the constraints are linear matrix inequalities, for which the standard Lagrangian condition is sufficient for optimality. However, this condition requires constraint qualifications to completely characterize optimality. We present a necessary and sufficient condition for optimality without a constraint...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 19 شماره
صفحات -
تاریخ انتشار 2008